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Pressure pulsation has a critical importance in the design of refrigerant compressor since
it a!ects the performance by increasing over-compression loss, and it acts as a noise and
vibration source. For the numerical analysis of pressure pulsation, quasi-steady #ow
equation has been used because of its easy manipulation derived from the pressure
di!erence. By considering the dynamic e!ects of #uid, a new Helmholtz resonator model was
also proposed on the basis of the continuity and the momentum equations, which consists of
necks and cavities in #ow manifolds.

In this paper, a modi"ed new Helmholtz resonator is introduced to include the gas inertia
e!ect due to the volume decrease in the cavity. Comparisons between this modi"ed new
Helmholtz calculations and experimental results show that it is necessary to include the gas
inertia e!ect in predicting pressure over-shooting phenomena at an instant of valve opening
state and this modi"ed new Helmholtz model can describe the over-compression
phenomena in the compressor cylinder, a phenomenon which hinders a noise source
identi"cation of compressor. ( 2001 Academic Press
1. INTRODUCTION

1.1. GENERAL

Noise and vibration control of hermetic-type compressors should start with the
identi"cation of the sources of noise and vibration. The coupling between the compressor
structure and the working #uid is a key mechanism in noise generated by systems. This
type of coupling, which makes the pressure pulsation characteristics important, is typical of
#uid dynamic systems where machinery is involved. Pressure pulsations have critical
importance in the design of refrigerant compressors since they a!ect the performance by
increasing losses related to over-compression, and they also act as a noise and vibration
source. For the numerical analysis of pressure pulsations, a new modi"ed Helmholtz
Resonator model is introduced here to include the gas inertia e!ect due to the volume
decrease in the cavity. This new model can describe the over-compression phenomena in the
compressor cylinder, a phenomenon which hinders a noise source identi"cation of the
compressor.
0022-460X/01/250775#22 $35.00/0 ( 2001 Academic Press



Figure 1. Rolling piston type rotary compressor.
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1.1.1. ¹he cause of pressure pulsation

Unsteady #ows in suction and discharge pipes are generated by the reciprocating action
of the piston, aided by the rapid opening and closing of pressure-actuated valves. These
pressure #uctuations, in turn, a!ect valve displacements, cylinder pressure and
instantaneous #uid #ow rates. Pressure pulsation consists of a steady #uctuation due to the
periodical motion of refrigerant gas during the suction and discharging process, and
a transient pulsation due to the valve motion which controls the discharge of the
compressed refrigerant gas.

1.1.2. De,nition and role of a cylinder

Among hermetic compressors, a rolling piston type rotary compressor in Figure 1 has
a lot of components.

The compressor cylinder is a chamber where a suction and compression cycle of
a refrigerant gas occurs, and chamber volume varies according to the compression process
due to a roller rotation. Therefore, the state of temperature and pressure of a refrigerant gas
changes from a low to high state. The volume< of a compression chamber of the cylinder in
Figure 2 is described by following geometrical relations as a function of rotating angle h [1].
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Figure 2. Sectional view of cylinder in a rotary-type compressor.
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1.2. THE CALCULATION METHOD OF PRESSURE PULSATION IN A CYLINDER

A lot of studies of the pressure calculation of a compressor cylinder has been reported,
namely a quasi-steady (QS), classical Helmholtz resonator (CHR), and new Helmholtz
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resonator (NHR). These conventional methods are summarized brie#y below for
a comparison with our proposed method (MNHR).

1.2.1. Quasi-steady (QS) [2]

The general calculation method of the pressure of a cylinder is a quasi-steady
#ow equation. This method calculates the mass #ow rate due to the pressure di!erence
between upstream and downstream sides, and it is convenient to obtain the density and
pressure without the calculation of #uid velocity. These relations are shown in Table A1 of
Appendix A.

However, it is not su$cient for this method to describe a dynamic response of pressure
pulsation since it disregards the dynamic behaviour of #uid.

1.2.2. Classical Helmholtz resonator (CHR) [3]

The CHR approximation was proposed as a new convenient approach. The gas is
considered to have inertia only in the necks (or connecting passages) and to be inertialess in
the cavities (or plenums) because of the relative di!erences in accelerating levels. On the
other hand, the gas is considered to be compressible in the cavities, but incompressible in
the neck because of the relative di!erences in volume. One may, therefore, picture the
acoustic model as consisting of incompressible plugs of gas in the necks, that oscillate like
pistons on springs that are provided by the elasticity of the compressible gas in the cavities.

1.2.3. New Helmholtz resonator (NHR) [4, 5]

Another simpli"ed method is NHR, which has the same assumption of the CHR
described above. However, CHR assumes that pressure and velocity amplitudes are small,
and all densities are constant, and introduce bulk modulus of elasticity which represents
a value of the density times the sound speed squared. But NHR distinguishes a di!erence of
densities at control volumes, all densities are thus not constant. The density of a neck is also
obtained by averaging those of the cavities.

1.2.4. Modi,ed new Helmholtz resonator (MNHR)

This method is a new proposed calculation approach, to consider a gas inertia e!ect due
to the volume decrease of this cylinder, which is not included in these conventional methods
mentioned above (QS, CHR, NHR).

2. FORMULATION FOR A DEFORMABLE VOLUME

For the calculation of cylinder pressure using control volume approach, a model of
deformable and moving control volume is introduced since the volume of cylinder structure
is varying during compressor operation.

2.1. THE MOTION EQUATION IN A DEFORMABLE CONTROL VOLUME

The fundamental laws governing the motion of a #uid are generally Lagrangian
descriptions; however, when a particular group of particles is not of fundamental interest,
Eulerian descriptions are used, which de"ne a region in space called a control volume and
observe the #uid #owing through it. Therefore, we introduce a mathematical description of
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#uid motion equation on a deformable and moving control volume, from the Eulerian point
of view [6].

Let N
sys

be the extensive property in system. It would be calculated by integrating its
corresponding intensive property g over the volume of interest, that is,
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The deformable control volume di!ers from the "xed control volume in that the control
boundary is allowed to move, as for a reciprocating piston. A system including control
volume moves and deforms from arbitrary time t to t#Dt, and this relation and de"ning
terms for the following derivation below are presented in Figure 3.

Relative velocity e!ects between a system and a control volume are described when both
move and deform. The system boundaries move at velocity u, and the control surface moves
at velocity u
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. The relative velocity u
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have translated and deformed and the control volume will also have translated and
deformed, but di!erently from the system
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Substituting these equations (5a, b) into equation (4) and we have
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To get the desired form, N
6
(t#Dt); a summed region (2), (A) and (B) in Figure 3, is added

and subtracted as follows:
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The "rst term on the right-hand side of equation (7) above means the time-rate-of-change in
control volume, and the second term is arranged using the di!erential volume element in
regions (5) and (6).

Referring again to Figure 3, equation (7) above therefore may be written as
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Figure 3. The system and the deformable control volume: (a) Element volume from region (6); (b) element
volume from region (5); and (c) velocity polygon. u is the velocity of #uid element; u

r
the relative velocity with

respect to control-volume boundary; u
b

the velocity of control-volume boundary.
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where u
r
in Figure 3 represents the velocity of the #uid relative to control volume between

the control volume and system at time t#Dt, and n in Figure 3 always points out of the
control volume. Equation (8) can be represented as
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This is often referred to as the Reynolds transport theorem. D/Dt on the left-hand side
means that we are following a particular group of #uid particles, and d/dt on the right-hand
side also used since we are only looking at a volume in space and not particular particles.
The "rst term on the right-hand side is referred to as the time-rate-of-change term and the



Figure 4. The deformable control volume.
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second as the #ux one. Subscripts cs in equation (9) represents the control surface, which
completely encloses the control volume.

The time-rate-of-change term of the basic system-to-control-volume transformation may
be reformulated to more easily account for the rate of deformation. Consider a generalized
control volume at time t and let it deform, assuming the position shown in Figure 4 at time
t#Dt. Referring to Figure 4, and the same procedure for the derivation of equation (9)
above, the time-rate-of-change term is reformulated as follows:
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where u
b
is the velocity of the control surface during the time from t to t#Dt in Figure 3,

and indicates the motion of control volume. For a non-deformable control volume, u
b

is
everywhere zero and the control volume is "xed in space.

Equation (9) above can be arranged by substituting equation (10) into
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Figure 5. PC (piston}cylinder) model as a deformable control volume.
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where u is the total velocity of the #uid with respect to the chosen reference frame in
Figure 3, u"u

r
#u

b
, during the time from the control volume at t to the system at t#Dt,

and thus represents the boundary velocity of the system.
To get the motion equation, choose g"u as dividing a momentum with a mass, then

equation (11) above is transformed as
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2.2. APPLICATION OF MOTION EQUATION ON COMPRESSOR MODEL

The equivalent model, piston}cylinder of compressor as a deformable control volume, is
introduced in Figure 5. This PC model is illustrated in Figure 5 can be interpreted as
consisting of two cavities, namely the cylinder <

1
and the mu%er <

3
, and of two necks,

namely the clearance volume<
2
and the mu%er discharge hole<

4
. (A list of nomenclature is

given in Appendix B.)
Subscripts denote the component position of cavities and necks. < means a cavity, u is

velocity, o is density and A is an e!ective area. At this PC model, volume of cavity<
1

is not
constant due to the movement of the rolling piston which has velocity u

p
.

In this paper, in order to include the gas inertia due to decrease in the volume, the motion
equation in the cavity <

1
has to be rearranged using equation (12). In the application of

equation (12), it is necessary to de"ne the boundary and relative velocity using the PC
model in Figure 5.
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where u
p

is the velocity of a rolling piston in a rotary compressor, and is calculated by
dividing the time derivative of a volume with a section area of the roller, 2R

R
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as shown in

Figure 2.
Our new proposed motion equation including the gas inertia term therefore can be

obtained by substituting equations (13a, b) into equation (12). The revision of equation (12)
gives
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First and second terms in equation (14) are described using equation (13a, b) in the case of
cavity <
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of the PC model in Figure 5.
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2.2.1. ¹he equation of motion in the neck <
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However, the conventional NHR method describes the motion equation in the cavity <
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as another di!erent equation instead of equation (17), since conventional NHR method
states that the e!ect of a gas inertia is negligible on the assumption that the volume of
a cavity is larger than that of a neck.
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2.2.2. ¹he equation of motion in the neck <
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This description of a neck is the same since the assumption of MNHR and NHR methods
are coincident.

2.2.3. ¹he equation of motion on MNHR approach

Our proposed MNHR approach gives the following equation by adding equation (17) in
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From equation (20), the time derivative of #uid velocity uR
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The sign of velocity u indicates a negative value in case of in#ow, and a positive value in
out#ow.

A limiting condition is that u
2

has to be less than or equal to the speed of sound
corresponding to the upstream temperature. When u

2
is equal to the speed of sound, o

1
of

equation (25) described below applies alone until the density has dropped su$ciently to give
subsonic speeds.

After subsonic speed is attained, both equations (21) and (25) apply.

2.2.4. ¹he equation of motion of NHR approach

NHR describes the following motion equation by adding equation (18) and equation (19).
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Rearranging equation (22) also gives
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The di!erence between our proposed MNHR and conventional NHR are explained by
comparing equations (21) and (23): MNHR contains the density o

1
, the volume<

1
and time

derivative of volume<Q
1

in a compressor cylinder. And the velocity u
p
and acceleration uR

p
of

a rolling piston is also included. However conventional NHR ignored these parameters.
These di!erences between them are compared and analyzed next using numerical and
experimental results.
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2.2.6. ¹he continuity equation of the cavity <
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The time derivative of density oR
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is also given as
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2.2.7. ¹he equation of motion in the neck <
4

If the same process is applied to the neck <
4
, by adding the momentum equation of the
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where P
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indicates the ambient or the "nal pressure of a terminal point in the last control
volume of PC model.

Rearranging the equation (28) above gives
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2.2.8. ¹he density of necks <
2

and <
4

Conventional CHR implies that the density of the assumed incompressible plug of gas is
equal to the mean #ow density. All densities are therefore replaced by a constant value since
CHR assumes that amplitude of pressure and velocity is small.

However, NHR states that the density of the neck is equal to an average of the densities in
the two adjoining cavities in PC model.
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2.2.9. ¹he pressure of cavities <
1

and <
3

To relate pressure to mass changes and heat transfer, the "rst law of thermodynamics
could be used. However, compressor designers have traditionally used the polytropic
process, since the two descriptions are equivalent if one assumes that the heat transfer plus
convected energy is proportional to external work [7]. Using a polytropic process
description, one obtains
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where superscript n means polytropic index, the subscript 0 denotes initial values.

2.3. ROLE AND EXISTENCE OF A COMPRESSOR VALVE

To describe the #uid #ow during operation in an actual compressor, a valve motion must
be taken into account, because a gas pulsation or unsteady #ow has a relation with the
periodical valve motion.

A valve in a compressor controls the #ow of refrigerant gas: when the pressure of
compressed gas is higher than that of discharged gas, it opens and discharges a gas; and it
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closes in the opposite case. A valve protects the incoming back-#ow of a discharged gas
stayed at the mu%er during the compression stage. In an actual valve motion, there is a time
delay due to the interaction between the valve motion and the #uid #ow around the valve.
A lot of papers describing the valve motion under the in#uence of #uid #ow were presented,
with special attention to the stopper or the retainer [8, 9].

The main object of this paper is to propose a new calculation method by considering
a gas inertia e!ect due to decreasing volume of a cavity, which happens at a compressor
cylinder in an actual operation of compressor. The e!ect of valve motion a!ecting #uid #ow
is therefore ignored, only to compare the pressure calculation method mentioned above. We
assume that #uid #ow is generated only from pressure di!erence between the upstream
and the downstream sides, and not a!ected by an interference due to valve motion. Time
delay in #uid motion due to a valve displacement is thus not included in this calculation
process.

For the modelling of an ideal valve existence of PC model in Figure 5, an assumption of
Table 1 is adopted. A role of an ideal valve can be de"ned with a comparison of pressures
between a cavity<

1
and<

3
. If P

1
, pressure of a cavity<

1
, is less than or equal to P

3
, pressure

of a cavity <
3
, then #uid does not #ow. On the contrary, if P

1
is greater than P

3
, then #uid

#ows and this case indicates the valve open state.

2.3.1. Geometrical data of PC model

For the numerical analysis, geometrical data of PC model in Table 2 is used. These values
are obtained from a real compressor under production. Cavities of <

1
and <

3
are the

cylinder and the mu%er respectively. Necks of <
2

and <
4

represent the clearance volume
and the mu%er discharge hole, and they have an e!ective area and an e!ective length.



Figure 6. Schematic diagram of the modi"ed compressor for measuring of pressure pulsation and valve lift.

Photo 1. Test jig of modi"ed compressor.
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3. EXPERIMENT

A pressure pulsation under an actual compressor operating condition is measured, to
compare our proposed MNHR with other conventional methods: QS and NHR. A test jig
of a modi"ed compressor in Figure 6 which has pressure transducers inside a compressor
shell was fabricated, and the main key point of this apparatus is to overcome the technical
di$culty of sensor attachment to the inside of the compressor shell.

Since the real compressor product is a shell made by heat press "t, it is not easy to
disassemble the compressor shell for sensor installation at each part: upper and lower motor
part, mu%er inside and cylinder inside part, which are shown in Figure 6. Photo 1 shows the
external view of this test jig of the modi"ed compressor.



TABLE 3

¹echnical data of pressure transducer

Charge relative

Manufacture Kistler
Type 6051
Range 0}200 bar
Sensitivity !1)9 pC/bar
Natural frequency 200 kHz
Linearity $1% FSO
Temperature range !196}3503C
Ampli"er Charge amp.
Type 5011

Photo 2. Calorimeter for measuring compressor performance.
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We choose the cylinder inside part as the measuring point of pressure, since this part
experiences the abrupt pressure change from low to high state and this position thus is
adequate to express our new proposed assumption appropriately. A sensor attachment
position is near the discharging port as indicated in Figure 2. A speci"cation of pressure
transducer used for measuring pressure at this cylinder part is summarized in Table 3.

To measure the practical value of pressure under actual operating compressor with
a refrigerant gas as a working #uid, a facility named a calorimeter was utilized, which
measures compressor performance and has a secondary refrigerant system as an auxiliary
cycle. Photos 2 and 3 display this calorimeter and test jig of modi"ed compressor set-up in
a calorimeter respectively.

Initial and boundary conditions follow the American Society of Heating, Refrigeration
and Air-conditioning Engineers (ASHRAE) compressor test condition in the case of R22
freon gas, described in Table 4. For the numerical comparison, a cylinder <

1
has initial



Photo 3. Test jig of modi"ed compressor in a calorimeter.

TABLE 4

Compressor test condition

Pressure at suction (kg/cm2A) 6)37
Pressure at discharge (kg/cm2G) 20)86

Temperature at expansion valve (3C) 46)1
Temperature at calorimeter outlet (3C) 35)0
Temperature at calorimeter room (3C) 35)0
Temperature at compressor room (3C) 35)0

Temperature at suction (3C) 35)0
Voltage (V) 220

Frequency (Hz) 60
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values of the pressure P
1

and density o
1

at suction side, ambient boundary values of
discharge side also has P

5
and o

5
is indicated in PC model in Figure 5.

4. RESULTS AND DISCUSSIONS

Experimental and numerical results are obtained for comparison of pressure calculation
methods between the MNHR and conventional methods: QS and NHR.

Density oscillation of cavities 1 and 3, that is, a compressor cylinder and a mu%er, are
shown in Figures 7 and 8 respectively. Their pressure oscillations are also presented in
Figures 9 and 10.

The present method describes the over-compression phenomena, at the instant of valve
opening, of cavity 1 in Figures 7 and 9, which is not obtained by other conventional



Figure 7. Density oscillation in volume 1 (compressor cylinder) of PC model;*L**, new Helmholtz; (*d**),
quasi-steady; (*D*), present.

Figure 8. Density oscillation in volume 3 (mu%er) of PC model:*L**, new Helmholtz; (*d**), quasi-steady;
(*D*), present.
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methods: QS and NHR. This means that our proposed present method has a unique
characteristic in predicting pressure variation in cavity 1 due to volume decrease according
to piston movement of PC model in Figure 5.

This di!erence between MNHR and conventional methods (QS and NHR) are due to our
new assumption that the gas inertia has to be included in cavities of classical Helmholtz



Figure 9. Pressure oscillation in volume 1 of PC model: *L**, new Helmholtz; (*d**), quasi-steady;
(*D*), present.

Figure 10. Pressure oscillation of volume 3 of PC model: *L**, new Helmholtz; (*d**), quasi-steady;
(*D*), present.
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resonator model when the volume of cavities such as compressor cylinder decreases due to
a rolling-piston movement.

Density and pressure oscillations in cavity 3 show no signi"cant di!erence between our
new MNHR and conventional NHR. This implies that these methods are based on the same
assumption that the gas inertia is negligible when the volume of cavity does not change.



Figure 11. Pressure oscillation in volume 1 and 3 of PC model:*L**, new Helmholtz (P1); (*]**), present
(P1); (*d**), new Helmholtz (P3); (*D*), present (P3).

Figure 12. Pressure in cylinder by various numerical models and experimentation: *L**, new Helmholtz;
(*d**), quasi-steady; (*#*), present; (**), experiment.
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Comparison of P
1

and P
3

in Figure 11 shows that the pressure results of all approaches
are the same before the discharge valve opens at about 2103 of rotating angle. The pressures
of the valve opening by all approaches shown similar results.

Validity of the newly proposed MNHR method is assured by comparing the calculation
results to the experimental results as presented in Figure 12 and in detailed scale in Figure 13.



Figure 13. Pressure at detailed scale in cylinder right after the valve opening by numerical models
experimentation:*L**, new Helmholtz; (*d**), quasi-steady; (#), present; (*#*), experiment.

Figure 14. Comparison of pressure in volume 1 of PC model due to operating velocities:*L**, new Helmholtz
(120Hz); (*]**), present (120 Hz); (*d**), new Helmholtz (60Hz); (*#*), present (60 Hz).
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Only our MNHR method follows the over-shooting phenomena at an instant of valve
opening depicted by the experimental results. The di!erence between the experimental
result and numerical ones before the valve opening shown in Figure 12 can be explained by
the fact that the gradient of pressure increase depends on the polytropic index n, which
ignores the heat transfer at compressor cylinder structure.
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Another di!erence between the numerical and experimental result at the end of one cycle
means that this is developed from the simpli"cation of a real complicated #ow mainfold,
and from the error inevitable in a pressure transducer installation. Other reasons can be
found in ignoring the leakage consideration in the simpli"ed PC model. All calculation
methods including our MNHR, conventional QS and NHR have a restriction in describing
the pressure surging at the end of one cycle.

When the compressor operation speed is increased, for example, in an inverter drive
air-conditioner, the gas inertia e!ects have to be included. The pro"le of Figure 14 shows
that the di!erence between our MNHR and convention NHR becomes larger as the
operation speed is doubled.

5. CONCLUSIONS

The pressure pulsation in refrigerant compressor has been studied by various methods.
A new pressure calculation method is proposed to include the gas inertia due to a decrease
in the volume of cavity in the conventional Helmholtz resonator model by a rolling piston
movement. The comparisons with an experimental result show that the proposed MNHR is
better than other conventional QS or NHR in predicting pressure over-shooting
phenomena at an instant of valve opening state.
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APPENDIX A

The general calculation method of the pressure of a cylinder is a quasi-steady #ow
equation. The relations are shown in Table A1.



TABLE A1

Mass -ow rate using quasi-steady -ow equations
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: critical pressure ratio

k: speci"c heat ratio
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sSubscript denotes (u) upstream, (d) downstream.
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APPENDIX B: NOMENCLATURE

Alphabetic symbols

A area of neck
b vane thickness
c sound speed of refrigerant gas
D diameter of discharge port
e relative eccentricity, R

C
!R

RH
c

cylinder height
¸ e!ective length of neck
m mass of #uid
N extensive property
P pressure
P
r1

inlet pressure of neck 2
DP (t) pressure di!erence around valve system
R

V
vane tip radius

R
R

roller radius
R

C
cylinder radius

R gas constant
t time
u velocity of #uid element
u
b

velocity of control volume boundary (control surface)
u
r

relative velocity with respect to control volume boundary element
< volume of capacity
<
T

total volume of cylinder
w velocity of #uid

Greek symbols

g intensive property
s vane extension
k speci"c heat ratio of refrigerant gas
o density of #uid
h rotation angle of crank-shaft
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u rotating velocity of crank-shaft
d di!erence between valve lift and retainer height, y (x)!R(x)

superscript

n polytropic index

subscript

c.v. control volume
c.s. control surface
d downstream
sys system
u upstream
0 initial condition
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